Summary of Essential Inorganic Elements | Element* | Best food source | RDA
(1989)** | ODA*** | Principal functions | Major deficiency symptoms | Element* | Best food source | RDA
(1989)** | ODA*** | Principal functions | Major deficiency symptoms | |---|--|-------------------------------------|----------------|---|---|---|---|---|--------------------------|--|--| | Sodium (Na ⁺) | Table salt,
salty foods,
baking soda,
baking powder | 500 mg‡ | | Acid-base balance,
water balance,
CO ₂ transport,
cell membrane
permeability,
muscle activity | Dehydration, acidosis | Iodine (I ⁻) | Seafoods, iodized salt | 150 mcg | 250-350
mcg | Constituent of
thyroxin;
regulator of
cellular oxidation | Goiter
(hypothyroidism)
cretinism | | | | | | | | Fluoride
(F') | Seafoods, some
drinking water | 1.5–
4 mg‡
(1ppm in
drinking
water) | | Constituent of
tooth enamel;
strengthens
bones and teeth | Dental caries;
osteoporosis | | Potassium (K ⁺) | Vegetables,
fruits, whole
grains, meat,
milk, legumes | 2000 mg‡ | | Acid-base balance,
water balance, CO ₂
transport, membrane
transport, neuro-
muscular activity | Acidosis, renal
damage, cardiac
arrest | Zinc (Zn ⁺⁺) | Liver, pancreas,
shellfish, most
animal tissues,
wheat germ,
legumes | 15 mg | 15–35 mg | Constituent of insulin, carbonic anhydrase, lactic dehydrogenase, alcohol dehydrogenase, and other enzymes | Anemia; stunted
growth;
hypogonadism in
male; decreased
protein synthesis
and wound healing;
lack of taste | | Calcium (Ca++) | Milk, milk
products, bone
meal, dark green
leaf vegetables | 1200 mg | 800-1500
mg | Formation of bones,
teeth; blood
clotting; cell
membrane
permeability;
neuromuscular
activity | Rickets (child), poor growth; osteoporosis (adult); muscle cramps | Copper (Cu ⁺ ⁺) | Liver, kidney,
egg yolk,
whole grains,
legumes | 1.5–3 mg‡ | 2–3 mg | Formation of
hemoglobin;
constituent of 11
oxidase enzymes | Anemia; aneurysms:
CNS lesions | | | | | | | | Manganese
(Mn ⁺⁺) | Liver, kidney,
wheat germ,
legumes, nuts | 2–5 mg‡ | | Cofactor for number
of enzymes;
synthesis of
mucopolysaccharides | In animals – sterility,
weakness | | Phosphorus (PO ₄) | Milk, milk
products, egg
yolk, meat,
whole grains,
legumes, nuts | 1200 mg | 800-1500
mg | Formation of bones, teeth; constituent of buffers; constituent of metabolic intermediates, nucleoproteins, phospholipids, phosphoproteins; constituent of | Osteomalacia (rare);
renal rickets;
cardiac arrhythmia | Cobalt (Co++) | Vitamin B12 in animal proteins | Not estab. | | Constituent of vitamin B12 | Anemia | | | | | | | | Chromium
(Cr ⁺⁺⁺) | Liver, animal and
plant tissue,
brewer's yeast | 0.05-
0.2 mg‡ | 0.1-0.2 mg | g Necessary for
glucose
utilization;
possible cofactor
of insulin | Unknown; deficiency
in diabetes claimed;
decreased glucose
tolerance in rats;
possible relation to
cardiovascular disease | | | | | | enzymes | | Element* | Best food source | RDA
(1989)** | ODA*** | Principal functions | Major deficiency
symptoms | | Chloride (CL ⁻) | Animal foods, table salt | 750 mg‡ | | Electrolyte,
osmotic balance;
gastric acid;
acid-base balance | Hypochloremic
alkalosis
(pernicious
vomiting) | Selenium (Se) | Liver, kidney,
heart, whole
grains, vegetables
(varies with Se in
soil) | 70 mcg | 100-
200 mcg | Constituent of glutathione peroxidase; inhibits lipid peroxidation | Liver necrosis and
muscular dystrophy
in animals;
cardiomyopathy in
humans | | Element* | Best food source | RDA
(1989)** | ODA*** | Principal functions | Major deficiency symptoms | Molybdenum (Mo) | Liver, kidney,
whole grains,
legumes, leafy | 75-
250 mcg | 250-
1000 mc | Constituent of xanthine oxidase, aldehyde oxidase | Decreased growth,
food consumption,
and life expectancy | | Magnesium
(Mg ⁺ †) | Chlorophyll, nuts,
legumes, whole
grains | 350 mg
male;
280 mg
female | 400-700
mg | Constituent of
bones, teeth;
decreases
neuromuscular
sensitivity;
enzyme cofactor | Muscular tremor;
confusion;
vasodilatation | that they are essential if
present in the human boo
tary evidence for some binickel, vanadium. Othe | included are those for which evidence exists or humans. Other elements not included but y in trace amounts for which there is fragmen- cohemical function, include cadmium, lithium, elements present in human identificance includes the companion of | | | | | | Iron (Fe ⁺⁺ or Fe ⁺⁺⁺) | Liver, meats,
egg yolk, green
leafy vegetables,
whole grains | 10 mg
male;
15 mg
female | 10-30 mg | Constituent of hemoglobin, myoglobin, catalase, cytochromes; | Microcytic-
hypochromic
anemia | amounts as incidental c
Ag, Au, Al, As, Br, Pb
**Recommended Dietar
and Nutrition Board, N | constituents of no known sig | shed by the Foo
1989. The value | ‡An
t Nutr
s intak | nns time. n estimated range recommended by the Food trition Board (1989) as a safe and adequate dake for healthy adults apted from Orten, J. and Neuhaus, O. Hi | | enzyme cofactor ‡An estimated range recommended by the Food and Nutrition Board (1989) as a safe and adequate daily intake for healthy adults Adapted from Orten, J. and Neuhaus, O. Human Biochemistry. St. Louis: C. V. Mosby Co., 1982